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ABSTRACT    
                  Bulk arrival general service retrial queue is analyzed. Server provides two phase of service: essential and optional. 

After each service completion, the server searches for customers in the orbit.  Customers may balk or renege at particular 

times. Accidental breakdown of the server is considered.  The repair of the failed server starts after a random amount of time 

known as delay time. After repair the server continues the service of the interrupted customer or waits for the same customer. 

The necessary and sufficient condition for the system to be stable is presented. By applying supplementary variable technique, 

the steady state distributions of the server state and the number of customers in the orbit are obtained. Numerical examples are 

presented to illustrate the influence of the parameters on several performance characteristics. 
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INTRODUCTION 
 In many waiting line systems, the role of the server is played by mechanical/electronic device, such as computer, 

ATM, traffic light etc., which is subject to accidental random failures; until the failed server is repaired, it may cause a halt in 

service. Wang [14], Wang and Li [13], Atencia et al. [6], Geni Gupur [11], Aissani [5], Baskar et al.[7], and Rehab et al.[12] have 

studied the queueing system with random breakdown. In most of the articles with server breakdown it is assumed that, the 

failed service channel undergoes repair instantaneously. But in several life situations, men have to be employed who may not 

be available on call to affect the necessary repair. Consequently a delay is caused in starting the repair of the breakdown 

server. 

 Queueing systems with impatient customers appear in many real life situations such as those involving impatient 

telephone switch board customers, hospital emergency rooms handling critical patients and inventory systems that store 

perishable goods.  

Retrial queues have been widely used to model many problems arising in telecommunication and computer 

networks. Retrial queueing models are characterized by the feature that arriving calls which find the server busy, do not line up 

or leave the system immediately forever, but go to some virtual place called as orbit and try their luck again after some random 

time. During the last two decades considerable attention has been paid to the analysis of queueing system with repeated calls 

(also called retrial queues or queues with returning customers) see for example the book by Falin and Templeton [10], Artalejo 

and Gomez-Corral [3] and the survey papers of Artalejo [1],[2].  

The next specific feature considered in retrial queueing system is orbital search. Artalejo et al.[4], Dudin et al. [9] and 

Chakravarthy et al. [8] have investigated retrial queue with orbital search to reduce the idle time of the server. 

In this paper, bulk arrival two phase retrial queueing systems with balking, reneging, orbital search and server 

breakdown is discussed by including the concept of delay time and reserved time. Analytical treatment of this model is obtained 

by supplimentary variable technique. The main motivation is from applications to Local Area Networks, client server 

communication and electronic mail services on internet. 
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 MODEL DESCRIPTION 

 Consider a single server retrial queue in which customers arrive in batches of variable size according to a Poisson 

process with rate λ. The batch size Y is a random variable with probability mass function P(Y=k) = Ck, the probability generating 

function C(z) and first two moments  m1 and m2. At the arrival epoch of a batch, if the server is idle, then one of the customers 

get into the service immediately and others leave the service area and enter the retrial queue. If the server is busy or down, the 

arriving customers either join a retrial queue with probability p or leave the system with probability 1-p. The customer at the 

head of the retrial queue competes with potential primary customers to decide which customer will enter service next. If a 

primary customer arrives first, the retrial customer may cancel its attempt for service and either return to its position in the retrial 

queue with probability q  or quit the system with probability 1-q. The retrial time of the customer is generally distributed with 

distribution function A(x), Laplace Stieltjes transform A*(s) and the hazard rate function η(x). 

  The server provides two phases of service essential and optional. The essential service is needed to all 

arriving customers.  As soon as the essential service is completed, the customer may opt to leave the system with probability  τ 

or opt for the optional service with probability 1-τ. Assume i = 1 corresponds to the essential phase and i = 2 corresponds to the 

optional phase.  

            The service times follow an arbitrary distribution with distribution function Bi(x), Laplace Stieltjes transform 

Bi*(s), the hazard rate function µi(x) and the first two moments µi1 and µi2. If the server becomes free after completing the 

essential (optional) service, then immediately the server searches for customers in the orbit (if any) with probability 1-ρ1(1-ρ2) or 

remains idle with probability  ρ1(ρ2).  

 Assume that the server’s life time has exponential distribution with mean αi during service. When the server breaks 

down, there is some delay to start the repair. The delay time distributions in both service phases are arbitrarily distributed with 

probability distribution functions Vi(x), Laplace Stieltjes transform )(* sVi , the hazard rate function γi(x) and the first two 

moments vi1, vi2. The repair time in both service phases are also generally distributed with probability distribution functions Hi(x), 

Laplace Stieltjes transform )(* sH i , the hazard rate function βi(x) and the first two moments hi1, hi2.   

When the server fails in essential (optional) service, the interrupted customer either remains in the service position 

with probability r1(r2) until the server is up or leaves the service area with probability 1-r1(1-r2) and keeps returning at times 

exponentially distributed with the rate  θ1(θ2), until the server is repaired. 

 If the interrupted customer remains in service position, the server after completion of repair resumes service 

immediately. Otherwise the server waits for the same customer to return. This time is referred as reserved time. The server is 

not allowed to accept new customers until the interrupted customer leaves the system after completion of service. The server is 

said to be blocked if the server is busy or down. 

 At time t, let N(t) be the number of customers in the retrial queue, W(t) the elapsed retrial time of the customer in the 

retrial queue, X(t) the elapsed service time of the customer in service, U(t) the elapsed delay time in attending the failed server, 

Y(t) the elapsed repair time of the server and R(t) the elapsed reserved time. Define the following state probabilities:   

Ι0(t) is the probability that the server is idle at time t, and there is no customer in the retrial orbit. 

 Ιn(t, w) dw is the joint probability that at time  t  there are  n  customers in the orbit, the server is idle and the elapsed 

retrial time of an orbital customer is between  w  and  w + dw,   n ≥ 1. 

 dxxtP i
n ),()(

 is the joint probability that at time  t  there are  n  customers in the retrial orbit, the server is providing 

service with the elapsed service time between  x  and  x + dx,  where  n  ≥ 0.  

 )),,((  ),,( )(
,1

)(
,0 dxduuxtDdxduuxtD i

n
i
n  is the joint probability that at time t there are n customers in the retrial 

orbit, the server is down, the elapsed service time is x, the interrupted customer remains in the service position (not in the 

service position) and the elapsed delay time is between u and u + du, where n  ≥ 0.  

 )),,((  ),,( )(
,1

)(
,0 dxdyyxtFdxdyyxtF i

n
i
n  is the joint probability that at time t there are n customers in the 

retrial orbit, the server is down, the elapsed service time is x, the interrupted customer remains in the service position (not in the 

service position) and the elapsed repair time is between y  and  y + dy, where n  ≥ 0. 
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 dxdrrxtR i
n ),,()(

  is the joint probability that at time  t  there are  n  customers in the retrial orbit, the elapsed 

service time is equal to  x and the elapsed reserve time is between  r  and  r + dr, where n  ≥ 0.  

Theorem   
 The necessary and sufficient condition for the system is to be stable is 

  λpm1 [µ11(1+α1
1

1

1 r
θ
−

+h11+v11))+(1-τ) µ21(1+α2( 2

2

1 r
θ
−

+h21+v21))] <  1 - (1-A*(λ))  (q+m1-1) (τ ρ1+ρ2(1-τ))  

Proof 
 Let  S(k) be the generalized service time of the kth customer in service. Then {S(k)} are independently and identically 

distributed with Laplace transform 

B*(s)=B1*(s+α1-α1( 1 1

1

r s  θ
s  θ

+
+

H1*(s)V1*(s)))+(1-τ)B2*(s+ α2 - α2 ( 2 2

2

r s  θ
s  θ

+
+

 H2*(s) V2*(s))) 

and expected value 

E(S(k)) = µ11(1+ α1( 1

1

1  r
θ
−

+ h11 + v11)) +  (1 - τ) µ21(1 + α2( 2

2

1  r
θ
−

+ h21 + v21)) 

 Suppose the retrial queue has a large number of customers in the following discussion. Let P(S) and P(Ι)  denote 

respectively the probabilities that the system is blocked and idle. Let E(S(k)) be the expected blocked time and E(Ι) be the 

expected idle time. Then 

 P(S) =   
(k)

(k)
E(S )

E(S )  E( )+ Ι
  and    P(Ι)  = (k)

E( )
E(S )  E( ) 

Ι

+ Ι
 

The arrival rate at the retrial queue when the system is blocked is λ pm1P(S).  

The  arrival  rate  at  the  retrial  queue  when the server is idle is 

 (1 -A*(λ)) (m1 - 1) (ρ1 τ + (1 - τ) ρ2) P(Ι) / E(Ι).  

Total arrival rate at the retrial queue is   

λ pm1P(S) + (1 - A*(λ)) (m1 - 1) (ρ1 τ + (1 - τ) ρ2) P(Ι) / E(Ι). 

The exit rate from the retrial queue by entering service when there is no orbital search is  

A*(λ)) (ρ1 τ + (1 - τ) ρ2) P(Ι) / E(Ι).  

The exit rate from the retrial queue by the orbital search is  

(τ (1 - ρ1) + (1 - τ) (1 - ρ2)) P(Ι) / E(Ι).  

The exit rate from the retrial queue by leaving the system when a primary customer arrives first at the server is  

(1 - q) (1 - A*(λ)) (ρ1 τ + (1 - τ) ρ2) P(Ι) / E(Ι).  

 

The total exit rate from the retrial queue is  

[1 - q (1 - A*(λ)) (ρ1 τ + (1 - τ) ρ2)] P(Ι) / E(Ι). 

For stability, the arrival rate should be less than the exit rate. Hence 

λ pm1P(S) + (1-A*(λ))(m1-1) (ρ1τ+(1-τ) ρ2) P(Ι) / E(Ι) < [1 - q (1 - A*(λ)) (ρ1τ+(1- τ) ρ2)] P(Ι) / E(Ι). 

 

and  hence 

λ pm1 [µ11(1+α1( 1

1

1  r
θ
−

+ h11+v11))+(1 - τ) µ21(1 + α2( 2

2

1  r
θ
−

+ h21 + v21))] < 1 - (1 -A*(λ)) (q + m1 - 1) (ρ1 τ + (1 - τ) ρ2). 

STEADY STATE DISTRIBUTIONS 
 The system of equations that governs the model under steady state, by supplementary variable method are  
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The steady state boundary conditions are 
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 Define the following probability generating functions  
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Proceeding in the usual manner with the equations (1) – (13) we can determine the expressions of 

),,(R  and ),,(F   ),,,(D  ,),(P  ),,( (i)(i)
j

(i)
j

(i) rxzyxzuxzxzwzI , i = 1,2; j = 1,2. 

By defining the the partial probability generating function ∫
∞

=
0

dx x)(z, )( ψψ z
 

for ),( xzψ  and 

dy dx y) x,(z,  )(
0 0
∫ ∫
∞ ∞

= ψψ z  for ),,( yxzψ , we can find the queue size probability generating functions  

 )(R and  )(F  ),(D  ),(P  ,)( (i)(i)
j

(i)
j

(i) zzzzzI .  

PERFORMANCE MEASURES 

Taking z = 1 in  )(R and  )(F  ),(D  ),(P  ,)( (i)(i)
j

(i)
j

(i) zzzzzI we obtain the following system state 

probabilities  

The steady state probability that the system is non-empty and the server is idle is 

          Ι  =  Ι(1) = 0I (1-A*(λ))[ 1K′ (1)+(1-τ) 2K′ (1) + m1(τ ρ1+(1- τ) ρ2)-1] / T1                     (15)    

The steady state probability that the server is busy is   

         P  =  )1()1( )2()1( PP +  

   =  0I  λ N2 [µ11 + (1 - τ) µ21] / T1                       (16) 

The steady state probability that the breakdown server waits for its repair to start is given by 

         D    = )1()1()1()1( )2(
0

)2(
0

)1(
1

)1(
0 DDDD +++   

               = 0I λ N2 [α1 µ11 v11 + (1 - τ) α2 µ21 v21] / T1                 (17) 

The steady state probability that the server is under repair is 

         F =  )1()1()1()1( )2(
0

)2(
0

)1(
1

)1(
0 FFFF +++  

            = 0I λ N2 [α1 µ11 h11 + (1- τ) α2 µ21 h21] / T1                     (18)  

The steady state probability that the server is in reserved time is 

        R  = )1()1( )2()1( RR +  

             = 0I λN2[(1-r1) α1 µ11 / θ1 + (1 - τ) (1 - r2) α2 µ21 / θ2] / T1                   (19) 

Using the normalizing condition 1  R  F  D  P  I  0 =+++++I  the expression of 0I  is derived as 0I  = T1 / N1 

                     (20) 

where  

T1 = 1 - 1K′ (1)-(1-τ) 2K′ (1)-(1-A*(λ))(q +m1-1)(τ ρ1 + ρ2(1 - τ)) 

N1 = A*(λ)+(1-q)(1-A*(λ))(τρ1+ρ2(1-τ))+( 1K′ (1)+(1-τ) 2K′ (1))(A*(λ)m1(1-p)+(1-q) (1- A*(λ)))/(pm1) 
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N2  =  m1 A*(λ) + (1- q) (1 - A*(λ)) 

iK′  (1) = pλ µi1 m1 (1 + αi ( i

i

1  r
θ
−

 + hi1 + vi1)),   i = 1, 2. 

The probability generating function of the number of customers in the retrial queue is given by 
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The probability generating function of the number of customers in the system is given by 
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The mean number of customers in the orbit  is  

Lq = qP′ (1) 

     = 
111

12313241 2/
mNpT

mmNTNTNT ++
                (21) 

The mean number of customers in the system  is  

Ls = sP′ (1)  

     = 
111

12313251 2/
mNpT

mmNTNTNT ++
            (22) 

where 

T2  = 1-(1-A*(λ))(τρ1+ρ2(1-τ))[ 1K′ (1)(q+m1-1)+qm1+m2/2]- 1K′ (1)-(1-τ) 2K′ (1)[ 1K′ (1)+ 

        (1-ρ2)+ρ2(A*(λ)+(1-A*(λ))(q+m1))]-( 1K′′ (1)+(1-τ) 2K′′ (1))/2  

N3 = pm1(1-A*(λ))[1-(1-q) (τ ρ1+ρ2(1-τ))]-[ 1K′ (1)+(1-τ) 2K′ (1)] [m1(1-p)A*(λ)+(1-q)  (1- A*(λ))] 

N4=p[τρ1+ρ2(1-τ)][(1-A*(λ))(1-q)(m1(q+ 1K′ (1))+m2/2)-m1A*(λ) 1K′ (1)]+pA*(λ)[m1+m2/2] +pm1(1-τ)[ρ2(1-q)(1-A*(λ)) 2K′ (1) 

    - 2K′′ (1)(1-ρ2)/2]+[ 1K′ (1)+(1-τ) 2K′ (1)] [m1(1-q)(1-A*(λ))+A*(λ)(1-p)(m1+m2/2)] 

    +[ 1K′′ (1)+(1-τ) 2K′′ (1)+2(1-τ) 1K′ (1) 2K′′  (1)][N2pm1A*(λ)] 

N5 = N4 + N2 [ 1K′  (1) + (1 - τ) 2K′′  (1)] 
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+ hi1 + vi1)),   i = 1, 2 

RELIABILITY INDEXES OF THE SERVER 

 We now consider some reliability quantities of the server. Let A(t) be the system availability at time t. 

The steady state availability of the server A  is  

            A      =
t   
lim
→ ∞

 A(t).  

      =   
t   
lim
→ ∞

 P {the service station is up at time t} 

                    =    Ι0 + 
n 1

∞

=
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0

∞

∫ Ιn(w) dw + 
2

n 0 i 1
 

∞

= =
∑ ∑ [ dxxP i
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)(∫
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∞ ∞

0 0

)( ),( dxdrrxR i
n  ] 
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             = Ι0 + Ι + P + R 

             =   {A*(λ) + (1-A*(λ))(1-q) (τρ1 + ρ2(1-τ))-A*(λ) ( 1K′ (1) + (1-τ) 2K′ (1))  

                 + λ N2 [µ11(1 + α1( 1

1

1  r
θ
−

)) + (1-τ) µ21 (1 + α2 ( 2

2

1  r
θ
−

))]} / N1              (23) 

The steady state failure frequency of the server is 

      F       =    
n 0

∞

=
∑

2

i 1=
∑ dxxP i

ni )(
0

)(∫
∞

α  

              =    N2 [α1 µ11 + α2 (1-τ) µ21] / N1                  (24) 

 
SPECIAL CASES 

 The model under study is a generalization of many queueing models. 

Case 1: If C(z) = z, then the model reduces to M/G/1 two phase retrial queueing system with server breakdown, delayed repair 

and orbital search. 

Case 2:  If  τ = 1 and ρ1 = ρ2 = 1 the system reduces to single phase retrial queueing system with server breakdown and 

delayed repair. 

Case 3:  If A*(λ) → 1, p = q =  ρ1 = ρ2 = 1, C(z) = z, this model reduces to M/G/1 queue with second optional service and server 

breakdowns with delayed repairs. 

Case 4 : If  A*(λ) → 1, p = q = ρ1 = ρ2 = r1 = r2 = 1, C(z) = z,  the system reduces to M/G/1 queue with second optional service 

and server breakdowns.  

Case 5:  If A*(λ) → 1, p = q = ρ1 = ρ2 = 1, α1 = α2 = 0, C(z) = z,  then the model reduces to An M/G/1 queue with second 

optional service.  

NUMERICAL RESULTS 
 We present some numerical results to illustrate the effect of varying parameters on the performance measures of our 

system. 

 Assume that the service time, retrial time, delay time and repair time distributions are exponential with rate 

respectively µ1, µ2, η, γ1, γ2, β1 and  β2. For the choice of parameters (λ, η, µ1, µ2, γ1, γ2, β1, β2, r1, r2, ρ1, ρ2, τ, θ1, θ2, C1, C2, α1, 

α2, p, q)  =  (1, 10, 10, 15, 6, 4, 5, 4, 0.5, 0.5, 0.7, 0.7, 0.5, 5, 5, 0.6, 0.4, 5, 3, 0.8, 0.8). 

Tables 1 - 3 give the values of  Ι0 , Ι, P and Lq. 

 From  Tables  1  and  2, it is observed that for the increasing values of 1 – p and 1 – q, the values of  Ι1 and  P1 

decrease whereas  Ι0  increases which agree with the intuitive expectations. Due to orbital search the expected orbit size 

increases to a certain level and then decreases. Numerical results for various values of repair rate  β2 are shown in Table 3. As 

expected,  Ι0 and  P1 increase while  Ι1 and Lq decrease with the increase in  β2. 

 Assume that the distributions of service time, retrial time, delay time and repair time follow (i) Erlangian of order 2, (ii) 

Exponential, (iii) Hyper-exponential distributions. Table 4 provides the availability of the server A and the failure frequency  F  

by variying the  values of  µ1, τ  and  α1 for the three processes Erlang, exponential and hyper-exponential with the fixed values 

(λ, η, µ2, γ1, γ2, β1, β2, r1, r2, ρ1, ρ2, θ1, θ2, C1, C2, α2, p, q, a) = (1, 15, 20, 5, 6, 3, 6, 0.5, 0.5, 0.5, 0.5, 6, 3, 0.6, 0.4, 2, 0.8, 0.8, 

0.5). 

 For all µ1 and τ, as α1 increases the availability of the server decreases and the failure frequency increases. This can 

be explained intuitively as follows: As failure rate α1 increases life time decreases and hence availability decreases and failure 

rate increases.   

 

1 – q Ι0 Ι1 P1 Lq 
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      Table  1. Performance measures by                                                        
Table  2.  Performance measures by  

     varying reneging probability                                                   
             varying balking probability 

 

 
 

      Table  3.  Performance measures by varying  β2 

β2 Ι0 Ι1 P1 Lq 

5 
10 
15 
20 
25 
30 
35 
40 
45 
50 

0.5016 
0.5138 
0.5178 
0.5199 
0.5211 
0.5219 
0.5225 
0.5229 
0.5233 
0.5236 

0.0397 
0.0388 
0.0385 
0.0383 
0.0382 
0.0382 
0.0381 
0.0381 
0.0381 
0.0381 

0.1660 
0.1664 
0.1666 
0.1667 
0.1667 
0.1667 
0.1668 
0.1668 
0.1668 
0.1668 

1.2478 
1.2412 
1.2392 
1.2382 
1.2377 
1.2373 
1.2371 
1.2369 
1.2367 
1.2366 

 
 
 
 
 
 
 
Table  4. Availability and Failure frequency 

µ1 τ α1 
Erlang Exponential Hyper-exponential 

A F A F A F 

25 0.0 

1 
2 
3 
4 
5 

0.7282 
0.6313 
0.5389 
0.4507 
0.3665 

0.3480 
0.4366 
0.5211 
0.6018 
0.6780 

0.9268 
0.8989 
0.8714 
0.8442 
0.8175 

0.1876 
0.2395 
0.2907 
0.3413 
0.3912 

0.9762 
0.9665 
0.6569 
0.9473 
0.9377 

0.1006 
0.1289 
0.1569 
0.1849 
0.2127 

 0.5 

1 
2 
3 
4 

0.8041 
0.7017 
0.6044 
0.5116 

0.2320 
0.3267 
0.4169 
0.5028 

0.9484 
0.9199 
0.8919 
0.8643 

0.1223 
0.1754 
0.2278 
0.2795 

0.9831 
0.9733 
0.9636 
0.9540 

0.0650 
0.0935 
0.1219 
0.1501 

 
0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
 

0.4880 
0.4918 
0.4956 
0.4992 
0.5028 
0.5063 
0.5098 
0.5132 
0.5165 
0.5198 

0.0409 
0.0405 
0.0401 
0.0397 
0.0393 
0.0389 
0.0386 
0.0382 
0.0379 
0.0375 

0.1667 
0.1663 
0.1658 
0.1653 
0.1649 
0.1644 
0.1640 
0.1636 
0.1631 
0.1627 

1.2352 
1.2443 
1.2516 
1.2570 
1.2606 
1.2626 
1.2630 
1.2618 
1.2591 
1.2550 

1 – p Ι0 Ι1 P1 Lq 

 
0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
 

0.4250 
0.4622 
0.4956 
0.5256 
0.5528 
0.5776 
0.6002 
0.6209 
0.6400 
0.6576 

0.0565 
0.0478 
0.0401 
0.0331 
0.0268 
0.0211 
0.0159 
0.0111 
0.0066 
0.0025 

0.1852 
0.1749 
0.1658 
0.1576 
0.1501 
0.1433 
0.1371 
0.1314 
0.1262 
0.1214 

0.8920 
1.2516 
1.2516 
1.3232 
1.3526 
1.3520 
1.3298 
1.2915 
1.2411 
1.1814 
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5 0.4231 0.5846 0.8370 0.3305 0.9443 0.1782 

1 

1 
2 
3 
4 
5 

0.8858 
0.7775 
0.6747 
0.5769 
0.4838 

0.1071 
0.2086 
0.3050 
0.3967 
0.4840 

0.9706 
0.9416 
0.9130 
0.8848 
0.8570 

0.0551 
0.1095 
0.1631 
0.2159 
0.2680 

0.9901 
0.9803 
0.9705 
0.9607 
0.9510 

0.0289 
0.0577 
0.0863 
0.1148 
0.1432 

30 

0.0 

1 
2 
3 
4 
5 

0.7440 
0.6619 
0.5831 
0.5074 
0.4345 

0.3340 
0.4090 
0.4810 
0.5503 
0.6169 

0.9313 
0.9080 
0.8849 
0.8620 
0.8394 

0.1792 
0.2227 
0.2657 
0.3082 
0.3503 

0.9779 
0.9698 
0.9618 
0.9538 
0.9459 

0.0958 
0.1193 
0.1426 
0.1658 
0.1890 

0.5 

1 
2 
3 
4 
5 

0.8210 
0.7343 
0.6512 
0.5715 
0.4948 

0.2165 
0.2968 
0.3737 
0.4475 
0.5185 

0.9531 
0.9292 
0.9057 
0.8824 
0.8594 

0.1136 
0.1581 
0.2021 
0.2455 
0.2885 

0.9484 
0.9767 
0.9686 
0.9606 
0.9526 

0.0601 
0.0838 
0.1073 
0.1308 
0.1542 

1 

1 
2 
3 
4 
5 

0.9040 
0.8123 
0.7244 
0.6402 
0.5595 

0.0900 
0.1760 
0.2584 
0.3373 
0.4130 

0.9754 
0.6511 
0.6271 
0.6034 
0.8800 

0.0461 
0.0916 
0.1366 
0.1811 
0.2251 

0.9918 
0.9836 
0.9755 
0.9674 
0.9593 

0.0240 
0.0479 
0.0716 
0.0953 
0.1189 

35 

0.0 

1 
2 
3 
4 
5 

0.7553 
0.6842 
0.6155 
0.5492 
0.4850 

0.3238 
0.3889 
0.4516 
0.5123 
0.5710 

0.9346 
0.9145 
0.8946 
0.8749 
0.8554 

0.1731 
0.2106 
0.2476 
0.2844 
0.3207 

0.9790 
0.9722 
0.9653 
0.9585 
0.9517 

0.0925 
0.1125 
0.1324 
0.1523 
0.1721 

0.5 

1 
2 
3 
4 
5 

0.8333 
0.7581 
0.6856 
0.3157 
0.5481 

0.2053 
0.2749 
0.3420 
0.4067 
0.4693 

0.9564 
0.9359 
0.9156 
0.8956 
0.8757 

0.1073 
0.1456 
0.1835 
0.2211 
0.2582 

0.9860 
0.9790 
0.9721 
0.9653 
0.9584 

0.0567 
0.0769 
0.0971 
0.1171 
0.1371 

1 

1 
2 
3 
4 
5 

0.9173 
0.8376 
0.7610 
0.6841 
0.6158 

0.0776 
0.1522 
0.2241 
0.2934 
0.3602 

0.9789 
0.9580 
0.9373 
0.9168 
0.8965 

0.0396 
0.0788 
0.1176 
0.1560 
0.1940 

0.9930 
0.9860 
0.9790 
0.9721 
0.9652 

0.0205 
0.0409 
0.0612 
0.0815 
0.1017 
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